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Roger Wolcott Richardson was born on
30␣ May 1930 in Baton Rouge, Louisiana. He
was the eldest of the four sons of Roger
Wolcott Richardson jr and Cora Johnson.
His father was completing a Ph.D. in
chemical engineering at the time of
Richardson’s birth and subsequently
devoted virtually his whole working life to
a career as an executive with Standard Oil
(later the Exxon Corporation). His younger
brother Hamilton was a well known U.S.
Davis Cup tennis player. He had two other
brothers, one of whom died of thyroid cancer
at an early age. Richardson was educated
at Baton Rouge High School where he was
a champion athlete and tennis player and
distinguished himself in mathematics and
physics. He graduated with the degree of
B.Sc., majoring in physics, from Louisiana
State University in 1951 and was then
conscripted into the U.S. Air Force. Richard-
son’s work during this period apparently
involved some mathematics and it later
appeared to amuse him that it was secret,
so that he could not tell his friends about
it. He was posted to Cambridge Mass., and
lived near the Harvard campus for two
years. His desire to pursue an intellectual
career was stimulated by the circle in which
he moved during this period.

In September 1953 Richardson com-
menced graduate studies at Harvard
University. There he met his contemporary
Frank Raymond, who was to remain a
lifelong friend. They were interested in
geometry and topology, the latter of which
was on the threshold of extending its
influence far beyond the immediate circle
of ‘rubber sheet geometry’ ideas which
spawned it, to analysis, dynamical systems,
algebra and even logic. However they found
no permanent staff member at Harvard
with those interests; moreover they found
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life at Harvard somewhat inimical. So, at
the suggestion of Professor Gleason, they
moved in May 1954 to the University of
Michigan, Ann Arbor, which had a very high
concentration of geometers and topologists
at that time (see below). Their class was
exceptional, containing several members
who would soon rise to prominence,
including the future Fields medallist Steve
Smale. In 1958 Raymond and Richardson
both completed Ph.D. degrees, Raymond
under the supervision of the venerable
topologist R.M. Wilder and Richardson
under that of the well known Lie group
theorist Hans Samelson. Raoul Bott, later
to become a professor at Harvard, was at
Ann Arbor as a junior staff member during
this time.

The year 1958 was notable for Richard-
son in another respect. During his time at
Ann Arbor he had met Margaret Jane Jewell
Love (‘Peggy’ to her friends), who was doing
postgraduate studies in English literature
and in 1958 he married her. They remained
inseparable.

In 1958 Richardson accepted an Instruct-
orship at Princeton University. In Princeton
there took place something of a reunion for
his Ann Arbor class; James Munkres was
also an instructor there, Raymond was a
fellow at the Institute of Advanced Study,
as was Smale. In Raymond’s words, they
were ‘heady days for topologists’ and the
Institute and Princeton University were at
the centre the topological world, with among
others, Solomon Lefschetz at the University.
During his period at Princeton, Richardson
had a fruitful collaboration with E.E. Floyd
(see below). In 1960 he accepted a tenure-
track position at the University of
Washington in Seattle, where he stayed
until 1970. During this period he spent
three separate years visiting centres for the
study of group actions on topological or
algebraic spaces: the Institute for Advanced
Study at Princeton in 1963-64, Oxford in
1964-65, and Warwick (U.K.) in 1969–70.

In 1970, Richardson and his wife decided,
for reasons related to the mood of the times
in the U.S. (they were the ‘Vietnam years’),
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not to return to the U.S. He did not talk
much about this decision, but he made it
plain that he and Peggy felt that under
Nixon, the country was adopting attitudes
far to the right of what they could count-
enance. They had participated in the famous
‘Washington moratorium’ and march not
long before their departure for the U.K., but
clearly felt that the views promoted there
would not prevail. Richardson accepted a
chair at Durham University in the U.K.
shortly afterwards. In 1978 he was
appointed a Professorial Fellow in Math-
ematics at the Australian National
University; in 1990 he was elected to the
Australian Academy of Science and in 1992,
his position at the A.N.U. was changed into
a Chair in Mathematics, the post which he
held until his death.

Although the Richardsons had no
children themselves, they were very much
involved with the families of their friends.
Roger was particularly popular with
children, since he was able to communicate
with a direct simplicity which extended to
his interactions with his adult peers. His
opinions were clear and strong and although
he generally was quite discreet about
expressing them, when he did, there was no
equivocation. He could therefore sometimes
appear somewhat uncompromising, but this
was generally no more than an instance of
his shunning of the art of diplomacy. For
these qualities he was widely respected in
the world of his professional and academic
peers, although they also meant that his life
was not entirely free of conflict.

Richardson was involved in several
research projects with collaborators around
Australia and indeed the world. His death
came at a time when he was actively using
and pursuing reseach grants and when he
was enjoying a particularly productive
period. In February 1993, he had what was
to have been a simple prostate operation,
but immediately after the operation the
news came that cancer had been discovered
in his bladder. From that point, the news
became progressively worse, until by the
end of May it had transpired that his was a
case of malignant lymphoma which had
been particularly difficult to diagnose. He
died on 15 June 1993.

Richardson’s work had been concerned
since the days of his thesis with different
aspects of group actions on manifolds,
especially the structure of the space of
orbits. It might be considered as part of the
mainstream of the ‘Erlangen Program’,

established by Felix Klein, who defined
geometry as the study of actions of groups
of symmetries on spaces. Although the
program had bifurcated into the continuous
case, represented by Sophus Lie and his
followers, and the discrete case pursued by
Klein himself and his school, the two
branches have now been to some extent
unified. This unification is embodied in
Roger Richardson’s work. Some conception
of the scope of this field may be conveyed
by the observations that invariant theory
may be regarded as one of its branches and
that it may be approached from the point of
view of topology, analysis or algebra. Two
of this century’s major trends in math-
ematics were the development of topology
(or ‘analysis situs’) by means of attaching
algebraic or numerical invariants to
topological spaces and the algebraization of
geometry far beyond anything which
Descartes could have envisaged. In the
latter, the properties of an algebraic variety
(e.g. a curve) are studied by replacing it by
a set of functions which characterize it
completely. Richardson was involved in both
movements. Early in his career at Ann
Arbor he was surrounded by key figures
such as Samelson, Raoul Bott and Steve
Smale (who went on to win his Fields Medal
for contributions to analytical aspects of
‘orbit theory’).  His work at this time
revolved around symmetries and the
structure of orbits of specific Lie groups
acting on low dimensional topological
spaces, such as spheres. He completely
classified actions of the special orthogonal
group SO(3) and the symplectic group Sp(1)
on the four-dimensional sphere S4 and
related the corresponding actions on S5 to
the orbit structure.

In the early ’60s, he developed an interest
in algebraic geometry, and it was here that
Richardson made his major impact. If X is
an algebraic variety (e.g. a curve or surface)
the symmetry properties of X may be
approached by considering a group G of
transformations of X; each element of G
defines a bijective map from X to itself. Such
a group G partitions X into orbits, which
are themselves varieties of various dim-
ensions. The closure of an orbit is the set of
points which are infinitesimally near it; it
is easy to see that such a closure must be a
union of orbits. This concept gives rise to
an intricate structure on the set of orbits.
Richardson’s best known result states that
if P is a parabolic subgroup of a reductive
group, then P has a dense orbit on its
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unipotent radical, i.e. one whose closure is
the whole space. This orbit is now
universally known as the ‘Richardson orbit’
and Richardson’s theorem has been applied
in many different ways. During his period
in Australia Richardson had a fruitful
collaboration with M.J. Field of Sydney on
symmetry breaking; this work is described
in some detail below. He also produced, with
the distinguished algebraist T.A. Springer
of Utrecht, a sequence of highly significant
works on symmetric varieties associated to
hermitian symmetric spaces.

Although Roger Richardson was not
especially prolific, his papers are mature
and polished and he took great care and
time over them. They all contain interesting
and sometimes striking results. Tech-
nicalities, with which he dealt with great
competence, do not obscure the conceptual
aspect of his work. His mathematical
instinct or ‘taste’ was impeccable; his quest-
ions usually led to work of considerable
depth.

From his position at the Australian
National University, Richardson was able
to identify and assist with the careers of
many of the most promising young math-
ematicians in the country. Many of them
testify to the open-minded frankness with
which he approached any issue. He was one
of the founders of the annual Australian Lie
Group Conference, the first meeting of
which took place in 1989.

The works of Richardson are listed in the
Bibliography at the end of this Memoir and
are referred to by number. All  other
references are by code to the ‘References’
which may also be found below.

Virtually all  of Richardson’s work
involves the concept of symmetries of some
geometric space, which he interpreted in the
sense of the ‘Erlangen Program’, viz. in
terms of group actions on various spaces.
For most of his career, this involved
studying the subtle interplay between group
actions, geometric properties of the space
concerned and the structure and properties
of various spaces of functions on the
underlying geometric space. However
during the last five or six years of his life,
he collaborated with M.J. Field in a series
of important papers on equivariant
bifurcation theory, in which ideas from the
mathematical world in which he normally
worked were applied to dynamical systems.
This work is described separately below.

A. Geometry and Group
Actions
Symmetries of spheres
The problem given to Richardson by H.
Samelson for his thesis involved group
actions on spheres. An n-dimensional
sphere Sn may be thought of as the set of
unit vectors in an (n+1)–dimensional
Euclidean space. Hence the orthogonal
group O (n+1) acts (linearly) on Sn. This
action describes the ‘obvious’ symmetries of
Sn. The question addressed by Richardson
in his thesis is whether there are other
symmetries-i.e. group actions on Sn not
‘equivalent’ to the linear action of (a
subgroup of) O(n + 1). He discovered many
and these form the subject of his
publications [3] and [4], with [2] addressing
the same subject. This early work was
topological in nature, as was his first
published paper [1] with E.E. Floyd, which
deals with the subtle question as to whether
a finite group acting on a cell always has a
fixed point. The paper gives a counter-
example of the alternating group A5 acting
on a high dimensional cell. This work was
the result of a collaboration with Floyd
during his Princeton days.

Deformation theory of Lie algebras
After this early topological work, Richard-
son had moved to the University of Wash-
ington in Seattle and there had a long
collaboration with A. Nijenhuis on the
deformation theory of algebraic structures.
In this theory, one studies algebraic
structures which come in parametrized
families and whose structure usually varies
‘continuously’ with the parameter. For
example if an associative algebra A is
generated over the real numbers R by a
single generator x, such that x2 = (t2–1)x (t ␣ a
parameter) then A is isomorphic to R ␣ ⊕ ␣ R
unless t = ±1, in which case A is isomorphic
to an algebra of triangular matrices. More
generally,  one might consider any
associative or Lie algebra whose structure
constants (multiplication table) depend on
parameters. If  these parameters are
thought of as varying over a space P (above
it is R) one might study this situation
geometrically by considering the map P →
X, where X is a ‘space of algebras’. This may
be done in an algebraic or analytic context,
according to whether the spaces are thought
of as algebraic or analytic (C∞, complex
analytic, etc.) varieties. A basic question is
whether the structure of algebras with
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similar parameters is similar; e.g. are they
isomorphic? In the case of Lie algebras,
Nijenhuis and Richardson showed in [6] and
[7] that there are cohomological conditions
for this to be true.

The above problems are similar to
questions in the theory of deformations of
complex structures which had been devel-
oped by Kodaira, Nirenberg and Spencer
[KNS] and by Kuranishi [Ki] some years
earlier; this possibly influenced Nijenhuis
and Richardson. Their approach involved
the detailed study of tangent spaces. Such
methods became a hallmark of much of
Richardson’s subsequent work on a variety
of questions. He himself referred to them
as his ‘specialty’.

The first case in point is his celebrated
work [8], which addresses the question: are
there finitely many unipotent conjugacy
classes in a semi-simple algebraic group? In
the case of the linear groups, one has the
standard ‘Jordan form’ for matrices, which
parameterizes unipotent classes by
partitions, valid over any field. Kostant and
Dynkin (see [K]) had answered the question
(concerning the finiteness of the number of
unipotent classes) affirmatively for complex
groups. When the underlying field is
arbitrary, Richardson also gave, in [8], an
affirmative answer with some restriction on
the characteristic which was necessitated
by the proof, which uses a tangent space
computation to reduce the question to the
theory of Jordan forms. The general case,
including the cases not covered by Richard-
son’s theory, was later settled by Lusztig [L]
using highly indirect methods, including his
classification with Deligne [DL] of the
irreducible characters of the corresponding
finite groups of rational points. Richardson’s
remains the most conceptual approach,
although it does not yield the most general
result. To illustrate the geometric flavour
of deformation theoretic questions, we
describe the main result of [10]. Let L be a
Lie algebra over the complex numbers C.
The subalgebras M of L which have a given
dimension n form a projective algebraic
variety X, which is a closed subvariety of
the classical Grassmanian variety of all n-
dimensional linear subspaces of L. The
group G of all automorphisms of L acts on
X and a subalgebra M ∈ X is called rigid if
its orbit G.M under the action of G on X is
open in X  ( in the Zariski topology).
Intuitively, this means that with ‘prob-
ability one’ any n-dimensional subalgebra
is conjugate to M.  Moreover every n-

dimensional subalgebra is ‘a deformation of ’
M. Richardson showed in [10] that M is rigid
if the Lie algebra cohomology group H1 (M,
L/M) vanishes, an ‘internal’ algebraic
condition.

Generic Isotropy Groups
Following his work on deformations of Lie
algebras, Richardson turned to the corres-
ponding questions for Lie or algebraic
groups, which is somewhat more delicate.
In the work [9], Richardson took up the
subject of deformations of Lie subgroups of
a Lie group and proved the following result,
which is in the spirit of that described in
the previous paragraph. Let G be a real or
complex Lie group and let (Hx)x∈X be a
collection of subgroups of G which are
parameterized by a manifold X. A typical
situation where this might arise is where
G acts on a manifold (or variety) X and one
takes Hx to be the isotropy group of x␣ ∈ X
(i.e. Hx = Gx = {g ␣ ∈ ␣ G|g ␣ ⋅ ␣ x ␣ =␣ x}). The key
question addressed in [19] is: how does (the
structure etc. of) Hx vary with x? In the real
analytic context, the following is proved in
[19]. Let K = Hx0 be one of the groups in the
collection and suppose that the component
group K/K0 is finitely generated. If H1 (K,
Lie (G)/Lie (K)) = 0, then there is an open
neighbourhood U of x0 in X and an analytic
map h : U → G such that η(x0) = e (the
identity element) and such that for all
x ␣ ∈ ␣ U, η (x) Hx0

 η(x)–1 is a subgroup of K. In
the prototypical case where G acts on X and
the Hx are the isotropy groups Gx, G acts on
the collection {Hx}x∈X by conjugation and one
has the concept of rigidity as above; the
stated result then becomes an assertion of
rigidity. These questions and results had led
to the notion of ‘generic isotropy group’
which had arisen earlier in the work of
Montgomery and Zippin.

They had shown that if a compact Lie
group G acts on a manifold X, then there is
an open and dense submanifold U of X such
that for x ∈U, the isotropy groups Gx all lie
in one conjugacy class (of subgroups of G).
Thus one speaks of the ‘generic’ isotropy
group. Richardson addressed the question
of generic isotropy groups (or ‘principal orbit
types’, following an older terminology) in
the context of more general group actions
in [20]. If G is not compact, generic isotropy
groups need not exist; examples of this,
which involve non-reductive groups G, had
been known earlier. In his paper [20], the
significance of which will be explained
below, Richardson proved the following
result concerning generic isotropy groups.

Roger Wolcott Richardson 1930–1993
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Let G be a linear algebraic group over C
which acts on a smooth irreducible affine
variety X. Suppose x ∈X is such that Gx is
reductive. Then there is an open (Zariski)
neighbourhood U of x such that for y ␣ ∈U,
the identity component Gy

0 is conjugate to a
subgroup of Gx. In [21], [22] and [24] he
discusses the various subtleties which arise
in considering the existence of generic
isotropy groups in various contexts, incl-
uding real analytic actions of real reductive
Lie groups and complex analytic actions of
complex reductive Lie groups on complex or
Stein manifolds.

The Slice Theorem and
Applications to Orbit
Structure
The significance of [20] extends further than
the result itself .  Shortly after its
appearance in 1972, D. Luna published his
‘slice theorem’ in [Lu1]. Suppose G is an
affine algebraic group acting on a variety
X. Let x ∈ X be a point such that the orbit
G␣ ⋅ ␣ x is closed (for example any orbit of
minimal dimension will do). Then Luna’s
slice theorem asserts roughly that the orbit
G ⋅ x has an étale neighbourhood N which is
a fibre product over Gx of  G ,  with a
subvariety S of X. Here ‘étale neighbour-
hood’ means neighbourhood in the étale
topology, where open sets are replaced by
morphisms φ : U → X which induce iso-
morphisms of the tangent spaces. This
means that the neighbourhood N is a union
of G-orbits and N is isomorphic to G × Gx S
(fibre product), which is a fibre space over
G/Gx (≅ G ⋅ x) with fibre S. Intuitively, N is
rather like a ‘product’ of the orbit G ⋅ x and
the ‘slice’ S.

The slice theorem has acquired fund-
amental importance in the theory of alge-
braic group actions (see [S]). It implies the
result of [20]. In [29], Richardson and Luna
gave another application which puts the
Chevalley restriction theorem (see [B]) into
a general setting. Their result asserts that
if X (above) is normal (‘almost’ smooth) and
Y  X is the set of fixed points of Gx, then
we have an isomorphism of orbit spaces :
Y//W␣ ~→ X//G, where W = NG (Gx)/ Gx is the
normaliser of Gx modulo Gx. Chevalley’s
theorem deals with the conjugation action
of a reductive group on itself. In that case
Gx becomes a maximal torus and W is the
Weyl group. In [35],  Richardson and
Bardsley established a ‘positive character-

istic version’ of the slice theorem, and gave
various applications.

It is in the paper [23] that Richardson
discovered the famous ‘Richardson orbit’.
Let P be a proper parabolic subgroup of a
semi-simple algebraic group G and write U
for its unipotent radical. Richardson’s result
is that P, which acts on U since U is normal
in P, has a dense open orbit in U. The
G-conjugacy class of the elements of this
orbit is called the Richardson class of G
which corresponds to P. These classes are
the key concept used by Bala and Carter
[BC1, BC2] in giving a complete (generic)
classification of the unipotent conjugacy
classes of reductive groups. This is the
classification now used in most applications.
Richardson orbits have been used by
Lusztig and Spaltenstein [LS] to define an
‘induction’ process for unipotent classes and
they also appear in the theory of primitive
ideals in enveloping algebras; they are
important as well in the character theory
of reductive groups over finite fields. In the
work [DLM], Richardson made an
important contribution in this context.

Unipotent orbits also appear in the paper
[28], in which Richardson showed that the
variety of all pairs of commuting elements
in a semi-simple, simply connected alge-
braic group G over C is irreducible and
similarly for its Lie algebra. His proof shows
that by induction, it suffices to consider the
case where one of the elements is unipotent.
The delicate question as to whether this
variety is reduced was known to Richard-
son, but remains unresolved.

Groups with Involutions,
Orbit Theory
Richardson next turned to the study of
algebraic groups with involutions, the
prototype of the situation being the case of
a Cartan involution of a complex Lie group,
whose group of fixed points is a maximal
compact subgroup, an example being the
group of unitary matrices as a subgroup of
GLn(C). In general, let G be a connected
reductive algebraic group over an alge-
braically closed field of characteristic not
equal to 2. Let θ be an (algebraic) auto-
morphism of G of order 2. An example other
than the prototype is the ‘trivial’ one, where
G is a product H × H (H reductive) and θ
permutes the factors. Let K = Gθ be the
group of fixed points of θ; this is a closed
reductive subgroup of G and the quotient
S ␣ =␣ G/K is an affine variety on which G
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(and therefore a fortiori K) acts by left trans-
lations. The K-action on S is the subject of
the paper [34]. In the ‘trivial’ case (see
above) this amounts to the study of the con-
jugation action of H on itself, since in that
case, K is just H, realised as the diagonal
subgroup of H × H. Thus the results of [34]
generalise those on conjugacy classes of red-
uctive groups, e.g. in [SpSt]. These results
also extend those of Kostant and Rallis
[KR], who studied the linear action of K on
the (–1)-eigenspace of θ on the Lie algebra
of G.

Still following the above theme, Richard-
son’s paper [37] on simultaneous conjugacy,
draws on results from his previous papers
[29], [32] and [8] and addresses problems
of some delicacy. Among his results is the
establishment of a type of ‘Jordan decomp-
osition’ for elements of S␣ =␣ G/K into semi-
simple and unipotent parts; in analogy with
the group case, he shows that the closed
K-orbits in S are the semi-simple ones and
that the variety of closed orbits is affine.
This paper ([37]) is also of interest for the
analysis of real Lie group actions on
symmetric spaces; the paper provides
insights into the geometry of the complex-
ifications of these spaces. Richardson
mentioned to T.A. Springer some time before
his death that he had given some thought
to a generalization of the above situation
where one has two commuting involutions
θ1 and θ2 on G, with corresponding fixed
point subgroups K1 and K2; in particular he
asserted that results like those of [37] were
true in this more general situation, which
would be of some significance because of its
relevance to the algebraic geometry of
‘affine symmetric spaces’ of real Lie groups.

The paper [45] with Springer deals with
the action of a Borel subgroup B of G on the
symmetric variety S = G/K (as above). It
was known that B generally has finitely
many orbits on S; the (finite) set V of orbits
is partially ordered under the usual closure
relation on orbits: the closure of a given
orbit is a union of orbits, which are decreed
to be smaller. In the ‘trivial’ case, V may be
identified with the Weyl group W of H and
the order relation is the Bruhat (or
Chevalley-Bruhat) order on W. In [45] corr-
esponding results are proved in general
for ␣ V .  In his posthumous paper [53],
Richardson elaborates on particular cases
of this work for various of the classical
groups.

In [50], G. Röhrle and R. Steinberg
combined forces with Richardson to address
the question, raised by G. Seitz, of class-

ifying the (finite set of) orbits of a parabolic
subgroup P of G on its unipotent radical in
case that radical is abelian. Let K be a Levi
subgroup of P. Then the classification of the
P-orbits on its unipotent radical is
equivalent to the classification of the
P-orbits on S␣ =␣ G/K, which fits into the
context above. The result is an elegant
solution which involves just root data;
involved in this work one again finds
Richardson’s favourite tangent space
computations.

Geometric Invariant
Theory
Geometric invariant theory is the theme of
Richardson’s papers [38], [39], [40], [42] and
[46]. One might describe the general area
as follows: if X is a complex algebraic variety
and C[X] is the algebra of regular functions
on X, let H be a group acting on X. One
obtains functions on the space X/H of orbits
of H on X from those functions in C[X] which
are invariant under H. Thus the study of
orbit spaces may be interpreted as the study
of the algebra C[X]H of invariants of a group
acting on an algebra. His important paper
[39] deals with the following question. Let
G be a connected semi-simple complex Lie
group, with Lie algebra G. If X is a G-stable
subvariety of G, regarded as an affine
G-space, when is X a normal (i.e. almost
smooth) variety? Richardson’s criterion is
couched in terms of invariants of a certain
Weyl group action. Let Y  be a Cartan
subalgebra of G and write W for the Weyl
group of G with respect to Y. Let D be an
irreducible component of the intersection
X␣ ∩ ␣ Y. Then W acts on X␣ ∩ ␣ Y, permuting its
irreducible components. If  W 0 is the
stabilizer in W of D then we may speak of
the algebras C[Y]W and C[D]W0 of W-(resp-
ectively W0)-invariant regular functions on
Y (respectively D). One then has the rest-
riction map : C[Y]W → ␣ C[D]W0 and the
necessary condition given by Richardson in
[39] for the normality of X is that this
restriction map should be surjective. This
criterion is applied to several examples. One
of these occurs in the context of Kostant and
Rallis: one takes X to be the closure of
Ad(G).E, where E is the (-1)-eigenspace of
an involutory automorphism of G (see
above). The case which has possibly led to
the most significant examples is where X is
the closure of a ‘decomposition class’ in G,
a decomposition class being a subvariety of

Roger Wolcott Richardson 1930–1993
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elements with similar Jordan decomp-
osition. In both these cases counterexamples
to the assertion of normality are found. A
particular example of a decomposition class
is a unipotent orbit in G.

The question of the normality of
unipotent orbit closures is a classical one
and is addressed in [38]. Take G to be the
algebra above; let P1, L , Pl be algebraically
independent homogeneous generators of
C[G]G and let π : G → Cl be defined by
π(x) = (P1(x), L , Pl(x)). In the case where G
is of ‘type A’, π is just the map which takes
a matrix to its characteristic polynomial
(±Pi(x) being the coefficients). The chief
result of [38] is the determination of the
rank of the derivative dπx at any x ∈G. This
result is used to study the normality of orbit
closures as follows. Define a sheet (see [BK])
in G to be an irreducible component of the
(locally closed) subvariety of G consisting
of elements whose centraliser in G has a
given fixed dimension. Let S be a sheet; then
S contains a unique unipotent orbit, say O =
Ad(G)␣ ⋅ ␣ x. If x has connected centraliser and
if the closure of O is normal, Richardson
shows that the function y a rank dπy is
constant on S. This result may be used to
find several examples non-normal closures
of unipotent orbits, solving problems of
some subtlety.

Equivariant Bifurcation
Theory
Contributed by Professor Ian Stewart
Beginning in the late 1980s, working jointly
with Mike Field, Roger Richardson made a
remarkable series of deep discoveries about
bifurcation in systems of differential
equations with symmetry. Their work shed
a great deal of light on puzzling phenomena
involving symmetry-breaking, and has
stimulated many further developments. The
main papers are Field and Richardson [41,
47, 49], together with an announcement in
[44].

Suppose that X = Rn and let G be a com-
pact Lie group acting linearly (and without
loss of generality orthogonally) on X. A
bifurcation problem is a mapping

g :␣ X␣ × ␣ R → X
(x, λ) a g(x, λ)

and we say that g is G-equivariant if
g(γ.x,λ) = γ.g(x, λ)

for all γεG. Usually the mapping g is
assumed to be smooth (that is, of class C∞).

The phrase ‘bifurcation problem’ arises
in the context of a differential equation of
the form

dx
dt 

= g(x, λ)

in which λ is a parameter, known as the
bifurcation parameter. The main question
about such systems of differential equations
is: how do solutions x = x(t) change as λ
varies? Any value of λ that corresponds to a
local change in the topological type of the
phase portrait of the solutions is said to be
a bifurcation point, and the aim of the
theory is to understand how the solutions x
change near specific types of bifurcation
point. The simplest case, and one that is
central to the theory, is when we seek steady
states, meaning that x remains constant.
Then dx

dt  = 0, so we must find the zeros of g,
given by g(x,λ) = 0.

Maximal Isotropy Subgroup Con-
jecture
An important phenomenon is spontaneous
symmetry-breaking, in which solutions
possess less symmetry than the entire group
G. Specifically, if we define the isotropy
subgroup  of  a point x∈X  to be Gx =
{γ∈G|γ.x ␣ =␣ x}␣ as above, then it may happen
that the equation g(x,λ) = 0 has a solution x
for which Gx ≠ G. In such a case we say that
x breaks the symmetry G. For example,
suppose that n =1 and that g(x,λ) = x3␣ – λ x.
This is equivariant for the action of G = Z2

=␣ {id,σ} in which σ.x = –x. Solutions of g = 0
are x = 0 for all λ, together with x = ±√λ
when λ > 0. The latter solutions break
symmetry since they have trivial isotropy.
They are said to form ‘branches’ because
they are curves parametrized by λ.

Until recently a key conjecture in the
area was the Maximal Isotropy Subgroup
Conjecture (MISC), which states that if the
group G acts absolutely irreducibly on X,
then generically each nontrivial branch of
zeros of g corresponds to a maximal isotropy
subgroup. Moreover, all maximal isotropy
subgroups can be realised by selecting a
suitable g. This conjecture has proved
influential and useful–even though it is
false. Counterexamples were found by
Chossat [Ch] and Lauterbach [La], and in
the context of the Landau theory of phase
transitions other counterexamples were
found by Jaric [Ja] and by Mukamel and
Jaric [MJa].

In [41], Field and Richardson describe a
whole class of counterexamples, in a context
that makes it clear why they are counter-
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examples. They achieve this by embedding
the problem in a rich area of mathematics,
the theory of finite real reflection groups
(otherwise known as finite Coxeter groups).
They first characterize symmetry-breaking
and the MISC when the group G is a Weyl
group W(L) of a simple complex Lie algebra
L. Specifically, they show that the MISC is
valid for the groups W(Aκ), W(Bκ), W(F4) as
well as for the dihedral groups I2(p) and the
icosahedral group H3. In contrast, they show
that the MISC fails for W(Dκ),κ ␣ ≥ ␣ 4. The
results also carry over to the adjoint rep-
resentation of the corresponding semi-
simple Lie group. In particular the MISC
holds for the adjoint representations of the
special unitary groups SU(n) and the odd-
dimensional special orthogonal groups
SO(2n+1), but fails for the even-dimensional
special orthogonal groups SO(2n).

Branching Theory
This work is taken further in [47] and [49].
The first paper develops a number of
techniques for analysing branching
behaviour in bifurcation problems, and the
second applies them to produce a number
of examples where bifurcation to branches
with submaximal isotropy occurs. Indeed
the authors provide evidence for the view
that this should be anticipated as a relat-
ively common phenomenon. In short, in
general the MISC does not provide even a
rough ‘rule of thumb’ guide to what kind of
symmetry-breaking is likely to occur. Not
only does it fail: it fails spectacularly.

The paper [47] is largely concerned with
obtaining good determinacy criteria for
bifurcation problems. A bifurcation problem
g is said to be κ-determined if it is equiv-
alent (in a sense that preserves the
bifurcation structure and any relevant
symmetries) to its Taylor series truncated
at degree κ. The main technical theorem is
a result on the local stability of branching,
which permits a key reduction in the study
of many bifurcation problems–namely the
elimination of the bifurcation parameter, so
that the problem can be studied in terms of
parameter-free equivariant vector fields on
the unit sphere.

The second paper [49] applies this
machinery to many specific examples. The
determinacy criteria are used to show that
W = W(Bκ) is 3-determined in its natural
action on Rκ, that is, that generically the
topology and isotropy of its branches may
be obtained by truncating the map q at cubic
order. This immediately reduces the whole
question to a specific, concrete system of

equations. Moreover, the maximal isotropy
subgroups of W are determined by the
symmetry axes of the κ-dimensional cube.

Now suppose that G is a subgroup of W
that acts absolutely irreducibly on Rκ and
that there are no nontrivial quadratic
G-equivariants. Then Field and Richardson
prove the remarkable result that G is also
3-determined. This has immediate implic-
ations, because some solution branches for
G-equivariant problems can now be read off
by determining the isotropy subgroups in
G of symmetry axes of the κ-cube. Often–
indeed usually–these are no longer maximal
isotropy subgroups in G. One important
application of this work is to the bifurcation
of stable heteroclinic cycles, which are
formed from a system of saddlepoint
equilibria when the unstable manifold of
one saddle connects to the stable manifold
of the next saddle in the cycle.  For
symmetric systems, such cycles can be
predicted on the basis of suitable group-
theoretic criteria. Paper [49] provides a
number of examples where generic bifurc-
ation to heteroclinic cycles, or to periodic
orbits, occurs.

From Richardson’s point of view, equi-
variant bifurcation theory was a particular
case of the general questions about group
actions and their orbits which were the
underlying theme of all his work; his papers
with Field are regarded as among the
deepest in the whole field of equivariant
bifurcation theory.
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